Regional differentiation of three goatfishes (parupeneus spp.) within the Western Indian Ocean

No Thumbnail Available



Journal Title

Journal ISSN

Volume Title


University of Fort Hare


Goatfishes inhabit inshore reefs and corals and are commercially important across their distribution in the Western Indian Ocean (WIO). The biogeography of these species in the WIO has not been explored with regards to their levels of diversity and relationships among regions. The genetic connectivity and differentiation of three goatfishes of the genus Parupeneus (P. barberinus, P. macronemus and P. rubescens) was studied using two mitochondrial genes (ND2 and 16S rRNA) and one nuclear gene (RAG1) using specimens from East and southern Africa, islands around the Mascarene plateau, Oman, Maldives and the Red Sea. Haplotype diversities, networks and AMOVA were used to measure genetic variance among localities and defined regional groups. There were high haplotype (HD > 0.9) and low nucleotide diversities (< 0.006) among all species for all gene regions, suggesting high levels of genetic differentiation among different areas, except for the mtDNA 16S data for P. macronemus and P. rubescens. For all three species, the FST population pairwise values revealed significant differentiation in all datasets for most population pairwise comparisons with the Maldives and genetic connectivity with haplotypes being shared among other localities. The 16S and RAG1, AMOVA for P. barberinus revealed a significant (P < 0.05) strong genetic structure among groups, for example P = 0.00 was estimated in the 16S data for four groups (the Maldives, WIO islands, Kenya and eastern mainland). This study found evidence for regional differentiation within the WIO for these three species supporting the presence of genetic breaks among areas. This differentiation could be either due to the historical isolation among areas or due to geographic and oceanic barriers such as the Mascarene Plateau and the Agulhas Current eddies in the Mozambique Channel. The effects of oceanographic features and physical barriers in the species distribution range and the dispersal potential based on the life history features of the species can have an influence on the genetic structuring of a population. It is also important to note that the length of the pelagic larval phase is just one factor affecting dispersal in marine organisms that can also explain the difference in genetic population structure. Unfortunately there is no specific information on the larval dispersal of these three goatfish. Therefore, studies are needed to be conducted on the specific biology and life history strategies of each Parupeneus species. These results suggest the importance of other factors, such as currents, and larval retention that may cause strong differentiation. These factors should also be considered when observing larval dispersal and its effect on population genetic structure. This study support the hypotheses that physical factors, processes (geographic barriers and oceanographic characteristics) and life history parameters need to be studied to understand the genetic differentiation of these Parupeneus reef fishes.



Biogeography, Genetic structure, Mitochondrial DNA, Nuclear DNA, Parupeneus spp., Western Indian Ocean