Research Outputs

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 2 of 2
  • Item
    Chryseobacterium aquifrigidense keratinase liberated essential and nonessential amino acids from chicken feather degradation
    (Taylor and Francis, 2023) Bokveld, Amahle; Nnolim, Nonso E.; Digban, Tennison O.; Nwodo, Uchechukwu U.
    Keratinous biomass valorization for value-added products presents a high prospect in ecological management and the advancement of the bio-economy. Consequently, soil samples from the poultry dumpsite were collected. The bacteria isolated on the basal salt medium were screened for keratinolytic activity. The potent chicken feathers degrading bacteria were identified through 16S rRNA gene sequencing and phylogenetic analysis. Fermentation process conditions were optimized, and the amino acid compositions of the feather hydrolysate were likewise quantified. Ten (10) proteolytic bacteria evaluated on skimmed milk agar showed intact chicken feather degradation ranging from 33% (WDS-03) to 88% (FPS-09). The extracellular keratinase activity ranged from 224.52 ± 42.46 U/mL (WDS-03) to 834.55 ± 66.86 U/mL (FPS-07). Based on 16S rRNA gene sequencing and phylogenetic analysis, the most potent keratinolytic isolates coded as FPS-07, FPS-09, FPS-01, and WDS-06 were identified as Chryseobacterium aquifrigidense FANN1, Chryseobacterium aquifrigidense FANN2, Stenotrophomonas maltophilia ANNb, and Bacillus sp. ANNa, respectively. C aquifrigidense FANN2 maximally produced keratinase (1460.90 ± 26.99 U/mL) at 72 h of incubation under optimal process conditions of pH (6), inoculum side (5%; v/v), temperature (30°C), and chicken feather (25 g/L). The feather hydrolysate showed a protein value of 67.54%, with a relative abundance of arginine (2.84%), serine (3.14%), aspartic acid (3.33%), glutamic acid (3.73%), and glycine (2.81%). C. aquifrigidense FANN2 yielded high keratinase titre and dismembered chicken feathers into amino acids-rich hydrolysate, highlighting its significance in the beneficiation of recalcitrant keratinous wastes into dietary proteins as potential livestock feed supplements.
  • Item
    Virulence Signatures, Integrons, and Antibiotic Resistance Genes in Bacterial Strains Recovered from Selected Commercial Dairy Products and Fresh Raw Meat
    (Springer, 2023-06-24) Aiyegoro, Olayinka A.; Moyane, Jeremia N.; Adegoke, Anthony A.; Jideani, Afam I.O.; Reddy, Poovendhree; Okoh, Anthony Ifeanyi
    Bacterial species responsible for food infections and intoxication are sometimes carried through the food production and processing. Very few published literatures exist on integrons among antibiotic-resistant staphylococcal strains from foods of animal origin in Gauteng Province, South Africa, hence this study. A total of 720 samples (360 meat and 360 dairies) from a community abattoir of a research farm in South Africa, using conventional bacteriological and molecular methods. Nine (9) bacterial strains, including Bacillus subtilis AYO-123, Acinetobacter baumannii AYO-241, Staphylococcus lentus AYO-352, among others were identified and submitted to GenBank. More bacterial strains were recovered from raw meat (90.5%) than dairy products (9.5%). Resistance was shown (0–100%) to Imipenem, Meropenem, Norfloxacin, Clindamycin, and 22 other antibiotics, without any carbapenem-resistant Acinetobacter baumannii and methicillin/vancomycin-resistant Staphylococcus species (MRSS/VRSS). Virulence genes for fibronectin-binding protein A (FnbA) were predominant (56.24%) followed by the circulating nucleic acids (cna) gene (43.75%). Others were staphylococcal enterotoxin A (sea, 41%), staphylococcal enterotoxin B (seb, 23.5%). Co-presence of sea and seb genes occurred in 11.76% of the isolates, but no coa genes was amplified. Antibiotic resistance genes (ARGs), tetK (70.58%), linA (29.4%), and ermA (11.76%) were detected, but none of the mecA and vat genes was amplified. Class 2 integron (50%) was more predominantly detected than integron 1 (25%), but no Class 3 integron was detected. Bacteria with both the detected virulence and antibiotic resistance genes are of potentialrisks to human health.