Evaluation of some wastewater treatment facilities in Chris Hani and Amatole district municipalities as potential sources of Escherichia coli in the environment

No Thumbnail Available



Journal Title

Journal ISSN

Volume Title



Access to clean and safe water is essential for the survival of human beings. Pollution of freshwater sources constitutes a major problem hindering access to safe water for drinking and other domestic uses. Wastewater effluent discharges often impact the microbiological qualities of surface waters with its attendant health and environmental problems. This study evaluated the microbiological qualities of the discharged effluents of four selected wastewater treatment plants in Amathole and Chris Hani District Municipalities of the Eastern Cape Province over a twelve-month sampling period. Microbiological analysis (faecal coliform, Escherichia coli and Escherichia coli O157:H7) was done using standard methods and polymerase chain reaction method was used to confirm identities ofbacterial isolates. Presumptive bacteria counts ranged as follows: faecal coliforms 0 to 1.6 × 103 CFU/100 ml, E. coli 0 to 1.4 × 103 CFU/100 ml and E. coli O157:H7 0 to 9.6 × 102 CFU/100 ml. Forty eight percent (305/626) of the presumptive E. coli isolates were confirmed using species-specific uidA gene which code for β-glucuronidase enzyme in E. coli. Antibiotic susceptibility profile of the isolate using a panel of 10 antibiotics shows 100% (150/150) resistance to antibiotics rifampicin and penicillin G while 49.3% (74/150) of the isolates and 46.7% (70/150) were susceptible to streptomycin and cefotaxime respectively. Multiple antibiotic resistance phenotypes (MARP) of the isolates showed resistance to two or more test antibiotics while the calculated multiple antibiotic resistance index (MARI) for the tested isolated is 0.49. The detection of potentially pathogenic E. coli in the final effluents suggestspotential danger to the receiving water bodies where the effluents are discharge. The high MARI valued obtained in this study indicates that the isolates are form environment where the tested antibiotics are being used and may further lead to the spread of multiple antibiotics resistance among other pathogens that may be present in the same environment.



Escherichia coli -- Genetics, Water -- Purification, Escherichia coli -- South Africa -- Eastern Cape