Browsing by Author "Chari, Martin Munashe"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessing the vulnerability of resource-poor households to disasters associated with climate variability using remote sensing and GIS techniques in the Nkonkobe Local Municipality, Eastern Cape Province, South Africa.(University of Fort Hare, 2016) Chari, Martin Munashe; Hamandawana, H.The main objective of the study was to assess the extent to which resource-poor households in selected villages of Nkonkobe Local Municipality in the Eastern Cape Province of South Africa are vulnerable to drought by using an improvised remote sensing and Geographic Information System (GIS)-based mapping approach. The research methodology was comprised of 1) assessment of vulnerability levels and 2) the calculation of established drought assessment indices comprising the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) from wet-season Landsat images covering a period of 29 years from 1985 to 2014 in order to objectively determine the temporal recurrence of drought in Nkonkobe Local Municipality. Vulnerability of households to drought was determined by using a multi-step GIS-based mapping approach in which 3 components comprising exposure, sensitivity and adaptive capacity were simultaneously analysed and averaged to determine the magnitude of vulnerability. Thereafter, the Analytical Hierarchy Process (AHP) was used to establish weighted contributions of these components to vulnerability. The weights applied to the AHP were obtained from the 2012 - 2017 Nkonkobe Integrated Development Plan (IDP) and perceptions that were solicited from key informants who were judged to be knowledgeable about the subject. A Kruskal-Wallis H test on demographic data for water access revealed that the demographic results are independent of choice of data acquired from different data providers (χ2(2) = 1.26, p = 0.533, with a mean ranked population scores of 7.4 for ECSECC, 6.8 for Quantec and 9.8 for StatsSA). Simple linear regression analysis revealed strong positive correlations between NDWI and NDVI ((r = 0.99609375, R2 = 1, for 1985), 1995 (r = 0.99609375, R2 = 1 for 1995), (r = 0.99609375, R2 = 1 for 2005) and (r = 0.99609375, R2 = 1 for 2014). The regression analysis proved that vegetation condition depends on surface water arising from rainfall. The results indicate that the whole of Nkonkobe Local Municipality is susceptible to drought with villages in south eastern part being most vulnerable to droughts due to high sensitivity and low adaptive capacity.Item Linking Satellite, Land Capability, and Socio-Economic Data for Local-Level Climate-Change-Adaptive Capacity Assessments and Decision Support(MDPI, 2023-08-31) Chari, Martin Munashe; Zhou, Leocadia; Hamandawana, HamisaiClimate change is now one of the most formidable threats to the livelihoods of resource-poor communities in low-income developing countries world-wide. Addressing this challenge continues to be undermined by the conspicuous absence of actionable adaptation strategies that are potentially capable of enhancing our capacities to realize the Millennial Sustainable Development Goals that seek to securitize access to adequate food supplies for everybody. This paper attempts to address this limitation by providing an improvised geostatistical methodology that integrates multi-source data to map the adaptive capacities of vulnerable communities in a selected South African local municipality, whose livelihoods are largely dependent on rain-fed agriculture. The development of this methodology was based on the use scripts that were compiled in Python and used to test-try its usefulness through a case-study-based assessment of the climate-change-adaptive capacities of local communities in Raymond Mhlaba Local Municipality (RMLM), Eastern Cape Province, South Africa. A Bayesian maximum entropy framework-based technique was used to overcome the lack of missing soil moisture data, which we included because of its reliable usefulness as a surrogate indicator of climate-change-driven variations in this variable on the sustainability of rain-fed agriculture. Analysis of the results from a sampling universe of 124 communities revealed that 65 and 56 of them had high and medium adaptive capacities, respectively, with the remaining 3 having low adaptive capacities. This finding indicates that more than half of the communities in the municipality’s communities have limited capabilities to cope with climate change’s impacts on their livelihoods. Although our proposed methodology is premised on findings from a case-study-based investigation, it is still extremely useful because it demonstratively shows that there is tremendous scope for the scientific community to provide objectively informed insights that can be used to enhance the adaptive capacities of those in need of the badly needed but difficult-to-access information. Added to this is the fact that our proposed methodology is not only applicable for use under different environmental settings but also capable of allowing us to cost-effectively tap into the rich, wide-ranging, freely accessible datasets at our disposal. The aim of this submission is to show that although we have the information, weneed to address these persevering challenges by exploring innovative approaches to translate the knowledge we have into actionable climate-change-adaptation strategies.