WAVE & OPTICS

(PHY 221)

DURATION: 3 Hours

INTERNAL EXAMINER

M. A. Someketa

INSTRUCTIONS

Answer any five (5) questions

MARKS: 100

MODERATOR

Dr. P. Mukumba
Question 1

(a) Derive the wave equation.

(b) Show that \(y = f(ct + x) \) satisfies the wave equation.

(c) Show that the wave profile \(y = f(ct - x) \) remains unchanged with time.

(d) Show that for a left-going wave, \(\frac{\partial y}{\partial t} = c \frac{\partial y}{\partial x} \).

(e) Derive an expression for the total energy in a wave.

(f) A wave of amplitude 0.1 m propagates along a string of linear mass density 0.01 kg/m, at a frequency of 5 Hz and speed of 9.55 m/s. Determine the rate at which energy is dissipated per cycle.

Question 2

(a) Consider two long strings of different densities, joined together at \(x = 0 \), and subject to the same tension \(T \). Assume the wave is incident from the negative \(x \) direction. At the junction the wave suffers partial reflection and partial transmission.

(i) State the boundary conditions. 2 x [3]

(ii) Determine the coefficients of reflection and transmission. [10]

(b) Show that \(u_g = v - \lambda \frac{\partial v}{\partial \lambda} \).

Question 3

(a) For standing waves on strings of finite length, show that the displacement of the \(n \)th harmonic is given by \(y_n = (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin \frac{n\pi x}{L} \).

(b) Show that this displacement satisfies the time independent form of the wave equation:

\[\frac{\partial^2 y}{\partial x^2} + k^2 y = 0 \]
(c) A string of length \(l \), mass per unit length \(\sigma \), and tension \(T \) is initially displaced a distance \(b \) (\(b \ll l \)) at the midpoint and is then released. Determine the Fourier coefficients for the subsequent motion. [6]

(d) Write the first four terms of the series. [4]

Question 4

(a) In Young’s double slit experiment, determine the positions from the central bright fringe, of the bright and the dark spots. [8]

(b) A viewing screen is separated from a double-slit source by 1.2 m. The distance between the two slits is 0.03 mm. The second – order bright fringe is 4.5 cm from the centre line.

(i) Determine the wavelength of the light. [2]

(ii) Calculate the distance between adjacent bright fringes. [4]

(iii) A light source emits visible light of two wavelengths: \(\lambda = 430 \text{ nm} \) and \(\lambda' = 520 \text{ nm} \). The source is used in a double-slit interference experiment in which \(L = 1.50 \text{ m} \) and \(d = 0.0250 \text{ mm} \). Find the separation distance between the third – order bright fringes. [6]

Question 5

(a) Calculate the minimum thickness of a soap-bubble film that results in constructive interference in the reflected light if the film is illuminated with light whose wavelength in free space is \(\lambda = 600 \text{ nm} \). [4]

(b) What if the film is twice as thick? Does this situation produce constructive interference? [2]

(c) Derive an expression between object and image distances for a spherical refracting surface. [8]

(d) A spherical convex mirror has a radius of curvature with a magnitude of 40.0 cm. Determine the position of the virtual image formed and magnification for object distances of 30.0 cm and 60.0 cm. [6]

(e) Calculate the minimum thickness of a soap-bubble film that results in constructive interference in the reflected light if the film is illuminated with light whose wavelength in free space is \(\lambda = 600 \text{ nm} \). [4]

(f) What if the film is twice as thick? Does this situation produce constructive interference? [2]

(g) Derive an expression between object and image distances for a spherical refracting surface. [8]

(h) A spherical convex mirror has a radius of curvature with a magnitude of 40.0 cm. Determine the position of the virtual image formed and magnification for object distances of 30.0 cm and 60.0 cm. [6]