University of Fort Hare

MAT 303

Supplementary Examinations: January 2019
Subject: Mathematics 3
Paper: Real Analysis

Time: 3 Hours Marks: 100 Subminimum: 40

This question paper consists of 5 pages

Internal examiner(s) External examiner(s)
Prof B B Makamba Prof V Murali

Instructions

Attempt NO more than FIVE(5) questions. Symbols used have the usual meanings.

*
Mathematics Supplementary Exams November 2018

Course Code: MAT 303
Course Name: Real Analysis
Time: 3 Hours
Marks: 100
Subminimum: 40

Instructions: Answer FIVE questions. This paper consists of 5 pages

Question One

1.1 (a) Define a metric on a non-empty set X. (2)
(b) Define the diameter of a set A in \mathbb{R}^n. Hence find the diameter of the set $\{ (x, y) : \frac{x^2}{25} + \frac{y^2}{25} \leq 1 \}$ in \mathbb{R}^2. (3)
(c) Define the trivial metric on X. (1)
(d) Define the usual metric on \mathbb{R}^n. (1)

1.2 Let d be a metric on X, $A \subset X$ and $p \in X$. The distance between p and A is $d(p, A) = \inf\{d(p, a) : a \in A\}$. Let d be the trivial metric on \mathbb{R} and $A = (-2,5) \subseteq \mathbb{R}$. (a) Find $d(5,A)$. If ρ is the usual metric on \mathbb{R}, (b) find (with motivation) (i) $\rho(5, A)$ and (ii) $\rho(-3,A)$. (3)

1.3 Show that, in \mathbb{R}^2, the set $A = \{ (x,y) : 0 < y < 3 \}$ is open. Draw also a rough sketch of set A. (4)

1.4 (a) Define the boundary of a subset A of \mathbb{R}^n. Then give another characterization of a boundary. (2)
(b) Let $A = \{ (x,y) \in \mathbb{R}^2 : -1 < x \leq 1 \}$. Find the boundary of A. Draw set A. (3)
(c) Show that a boundary point need not be an accumulation point. (2)

1.5 (a) Show that the set $A = \{ 1 + \frac{1}{n} : n \in \mathbb{N} \}$ is not closed in \mathbb{R}. (2)

[23]
Question Two

2.1 If \(x = \sup S \), for \(S \subseteq \mathbb{R} \), show that \(x \in \overline{S} \). \((3) \)

2.2 Prove that a set \(A \subseteq \mathbb{R}^n \) is closed if and only if for every sequence \(\{x_k\} \) in \(A \) which converges, the limit lies in \(A \). \((4) \)

2.3 Let \(B \subseteq \mathbb{R}^n \). Prove that \(x \in \overline{B} \) if and only if there is a sequence \(\{x_k\} \) in \(B \) converging to \(x \), where \(\overline{B} \) is the closure of \(B \) in \(\mathbb{R}^n \). \((5) \)

2.4 A metric space \((M, d)\) is complete if every Cauchy sequence in \(M \) converges to a point in \(M \). Show that the set \(Q^c \) of all irrational numbers (with the usual metric) is not a complete metric space. \((2) \)

2.5 (a) Let \(A \subseteq \mathbb{R} \), \(x, y \in A \). Define what is meant by a path joining \(x \) to \(y \). \((1) \)

(b) Let \(A \subseteq \mathbb{R}^n \). Define what is meant by (i) \(A \) is compact, (give three equivalent statements), (ii) \(A \) is path-connected. \((4) \)

2.6 Show that \(A = \{x \in \mathbb{R}^n : ||x|| \leq 4\} \) is path-connected. \((3) \)

Question Three

3.1 (a) The set \(S = \{(x, y) \in \mathbb{R}^2 : -1 < x < 2\} \) is not compact. Why? \((1) \)

(b) Let \(A = \{1 + \frac{1}{n} : n = 1, 2, \ldots \} \). Is \(A \) compact? Explain. If \(A \) is not compact, how can we “compactify” it? \((2) \)

3.2 The set \(\{(1 + \frac{1}{n}, 3) : n = 1, 2, \ldots \} \) is an open cover of \((1, 2)\). Show that this cover has no finite subcover of \(A \). \((4) \)

3.3 Show that \([2, 3] \cap Q\) is not path-connected, where \(Q \) is the set of all rational numbers. \((3) \)

3.4 Prove that a set \(A \subseteq \mathbb{R} \) is connected if and only if \(A \) is an interval. \((4) \)
3.5 Let \(f : A \to \mathbb{R}^n \). Prove that the following statements are equivalent:
(i) \(f \) is continuous on \(A \);
(ii) For each convergent sequence \(\{x_n\} \), converging to \(x_0 \in A \), the sequence \(\{f(x_n)\} \) converges to \(f(x_0) \);
(iii) For each open set \(U \subset \mathbb{R}^n \), \(f^{-1}(U) \subset A \) is open relative to \(A \), i.e. \(f^{-1}(U) = V \cap A \) for some open set \(V \) in \(A \).

\[\text{[22]} \]

Question Four

4.1 Let \(f : A \to \mathbb{R}^n \) be a continuous function. Prove that
(a) If \(K \subset A \) and \(K \) is connected, then \(f(K) \) is connected.
(b) If \(B \subset A \) and \(B \) is compact, then \(f(B) \) is compact.

4.2 Let \(f(x) = \frac{1}{x} \) where \(f : (0, \infty) \to \mathbb{R} \). Show, from definition, that \(f \) is continuous at \(x_0 \in (0, \infty) \).

4.3 Let \(f : [0, 1] \to [0, 1] \) be continuous. Show that \(f \) has a fixed point.

4.4 (a) Find a continuous map \(f : \mathbb{R} \to \mathbb{R} \) and a compact set \(K \subset \mathbb{R} \) such that \(f^{-1}(K) \) is not compact
(b) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be a continuous function and let \(A = \{f(x) : ||x|| = 3\} \). Show that \(A \) is a closed interval.

4.5 Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) be continuous. Show that \(\{x \in \mathbb{R}^n : ||f(x)|| < 2\} \) is open in \(\mathbb{R}^n \).

4.6 Let \(\{f_k : A \to \mathbb{R}^m\} \) be a sequence of functions.
(a) Define what is meant by the sequence of functions converges uniformly to \(f \).
(b) Let \(\{f_k : \mathbb{R} \to \mathbb{R}\} \) be given by \(f_k(x) = \begin{cases} 0 & \text{if } x < k \\ 1 & \text{if } x \geq k \end{cases} \). Show that the sequence \(\{f_k\} \) converges to 0 but the convergence is not uniform.
Question Five

5.1 Let \(\{ f_k : A \to \mathbb{R}^m \} \) be a sequence of continuous functions, and suppose \(f_k \to f \) uniformly. Prove that \(f \) is continuous. \(\quad (4) \)

5.2 (a) State, without proof, the Weierstrass M-test for uniform convergence. \(\quad (2) \)

(b) Show that \(\sum_{n=1}^{\infty} \frac{(\sin(nz))^2}{n^3} \) converges uniformly. \(\quad (2) \)

5.3 (a) State, without proof, the Contraction Mapping Principle. \(\quad (2) \)

(b) Give an example of a complete metric space \(X \) and a map \(T : X \to X \) with \(d(T(x), T(y)) \leq d(x, y) \) but having no fixed point. \(\quad (3) \)

5.4 (a) Let \(f : A \subseteq \mathbb{R}^n \to \mathbb{R}^m \). Define what is meant by \(f \) is differentiable at \(x_0 \in A \). \(\quad (2) \)

(b) Define the Jacobian matrix of the function \(f \) in (a) above. \(\quad (3) \)

(c) Let \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) be given by \(f(x, y) = (x^3, x^3y, x^3y^2) \). Compute the Jacobian matrix of \(f \). \(\quad (2) \)

5.5 Let \(x, y \in R \). Let \(U(x, y) = \frac{x^4 + y^4}{4} \) and \(V(x, y) = \cos x + \sin y \). Find at least one point near which we can solve for \(x, y \) in term of \(U, V \). \(\quad (4) \)

[24]

Question Six

6.1 Let \(x, y \in R \). Let \(U(x, y) = e^x \sin y \) and \(V(x, y) = e^x \cos y \). Show that \(f(x, y) = (U(x, y), V(x, y)) \) is locally invertible, but NOT invertible. \(\quad (4) \)

6.2 (a) Define a partition of an interval \([a, b]\). (b) Define the upper and the lower sums of a function \(f : [a, b] \to [0, \infty] \). (c) Define what is meant by \(f \) is Riemann integrable. \(\quad (5) \)

6.3 Let \(Q^c \) and \(Q \) denote the sets of irrational and rational numbers respectively. Let \(f : [0, 1] \to R \) be given by \(f(x) = \begin{cases}
1 & \text{if } x \in Q^c \\
0 & \text{if } x \in Q
\end{cases} \) Show that \(f \) is NOT Riemann integrable. \(\quad (4) \)
6.4 (a) Define the volume of a subset A of \mathbb{R}^n. (b) If $A = [3, 5] \times [-1, 2]$ and $n = 2$, find the volume of A. (c) Define what is meant by a subset A of \mathbb{R}^n has measure zero. (4)

6.5 (a) State, without proof, Lebesgue's Theorem. (b) State a corollary of the Lebesgue Theorem that characterises a set of measure zero in terms of volume. (4)

6.6 Let A be a set and $\mathcal{P}(A)$ the power set of A. Prove that $|A| < |\mathcal{P}(A)|$. (4)

[25]

********** END **********